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Note 

Iterative Algorithms for the Solution of Nonsymmetric 
Systems in the Modelling of Weak Plasma Turbulence 

1. INTRODUCTION 

Experiments performed over the last decade in the domain of controlled nuclear 
fusion have demonstrated the ability of radio-frequency waves not only to maintain 
steady state currents in the absence of any applied ohmic voltage but even to 
increase them in the presence of an opposing electric field (“ramp-up”). The quan- 
titative analysis of this regime requires intensive numerical simulations aiming to 
compute the large distortions induced by the injected waves in the electron distribu- 
tion function. Along this line, a two-dimensional finite element code (ADLER) has 
been developed at CRPP (Centre Recherches en Physique des Plasmas) Lausanne 
[20], which solves for the simultaneous evolution of the electron distribution func- 
tion and the wave spectrum. The computationally most intensive section of ADLER 
is the solution of a large number of non-symmetric linear systems using a banded 
Gauss elimination scheme. Because the memory and computing time required by a 
banded Gauss solver become prohibitively large as the problem size increases, we 
analyze four iterative algorithms for the solution of the non-symmetric systems that 
arise in this problem. 

The preconditioned conjugate gradient algorithm has proven very successful in 
solving sparse symmetric positive-definite linear systems (see among others 
[S, 7, 8, 111). Several generalizations of this method have been proposed for solving 
nonsymmetric linear systems. However, as reported by Saad and Schultz [ 163 none 
of these generalizations emerge as a clear winner, so that users face a difficult choice 
when trying to select the “best” algorithm to solve a particular problem. 

In this note, we compare the efficiency of four conjugate-gradient-like algorithms 
to solve the nonsymmetric systems generated by this problem in a production-type 
code: the normal equation algorithm (CGN), the bi-conjugate gradient (BCG), the 
conjugate gradient squared (CGS), and the generalized minimum residual method 
(GMRES(k)). For all these methods, we precondition the system using an incom- 
plete factorization [ll, 81 or a modified incomplete factorization [6] of the coef- 
ficient matrix. We show that the iterative solvers we test provide a viable alternative 
to band Gauss methods, particularly for very large problems. We have tested the 
solvers with non-symmetric matrices arising from different physical parameters (the 
electric field) and we show that the iterative solvers perform well also in the 
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presence of a large skew symmetric part if the symmetric part is positive. Our 
performance data suggest that CGS and GMRES(k) yield the best performances. 
The matrices we examine are typical of bilinear finite-element discretization of 
convection-diffusion equations, so that we expect the conclusions drawn in this 
note to apply to a wider class of problems. All the numerical experiments were 
performed on the IBM 3090 with vector facility [l]. 

2. FINITE ELEMENT MODELLING OF WEAK PLASMA TURBULENCE 

The quantitative analysis of the rump up regime relies upon a detailed description 
of the interaction between the injected waves and the plasma electrons in the 
presence of an opposing electric field. In particular, the large distortions of the 
electron distribution function resulting from the application of the RF power have 
to be carefully evaluated to compute the total driven current. 

To handle this problem a finite element code, ADLER, has been developed, 
which solves for the simultaneous evolution of the electron distribution function 
and the wave spectral distribution in velocity and wavenumber space respectively 
[ 18-201. From the computational point of view, the problem consists in advancing 
in time a pair of nonlinearly coupled two-dimensional fields, f(u, u) and W(k,, k,), 
where u, v and k,, k, denote the components of the electron velocity and the wave 
number parallel and perpendicular to the ambient magnetic field respectively. The 
task of following a complete evolution requires several hundreds of time-steps. 

The quasilinear model of current-drive consists in the following pair of kinetic 
equations [18]: 

~=v(~f+svf) 

gy= (2y - VOZ) w+ s, 

where f and Ware the electron and wave spectral distributions in velocity and wave 
number space, respectively. In Eq. (1) W = & + E and 9 = g= + Q( W), where the 
subscript c denotes the Coulomb collisions, E the electric field, and Q4( W) the 
quasilinear diffusion coefficient. 

In Eq. (2) y = y(f) is the quasilinear wave damping, v,,, the collisional damping, 
Z the ionic charge state, and S is the source of RF power. Length and time are 
normalized by the electron Debye length and inverse electron plasma frequency, 
respectively. At each time-step the code yields the electron distribution function and 
the wave spectral distribution. 

Using bilinear finite elements in velocity space and piecewise constants in 
wavenumber space (see [20]) and a Crank-Nicolson scheme to march in time, at 
each time step we have to solve an algebraic problem of the form 
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(3) 

where A, G, B, and C are the mass and force matrices arising from the discretiza- 
tion of the Eqs. (l)-(2), and the subscript n labels the discrete time lattice t,. 

A and B, are banded matrices of size N,N, and bandwidth 2N, + 3, with at most 
nine non-zero elements per row, while G and C, are diagonal. The code has a 
switch to change from an explicit to a fully implicit time integration scheme. We 
have not experimented lumping the matrix A, so that there is no advantage in using 
an explicit scheme. It is worth noting that the linear system in Eq. (3) is unsym- 
metric: it can be split into a symmetric positive definite part A - B,At/2, where B, 
is generated by the diffusive terms in the Eq. (l), and a skew-symmetric 
part - B,,Af/2 generated by the convective terms. In particular, for each value of 
the electric field E, one defines a critical speed v, = m such that for v > v, the 
skew-symmetric matrix B,, becomes dominant and can cause numerical instabilities. 

The algebraic problem represented by the Eqs. (3)-(4) has to be solved at each 
time-step and iteration cycle. As a result, we must solve several hundred linear 
systems with the same sparsity structure but different coefficients. When a direct 
Gauss solver is adopted the solution of these systems costs up to 90% of the total 
CPU time and requires a large amount of memory. These two factors limit the size 
of the modelization grid (about 100 x 50 gridpoints in velocity space) and motivate 
the analysis of iterative schemes. 

3. THE ALGORITHMS 

Consider the linear system of equations Ax = b, where A is a real, sparse, non- 
singular, non-symmetric matrix of order m, and b is a vector with m components. 
We consider four iterative algorithms to solve this problem, namely CGN, BCS, 
CGS, and GMRES. The four algorithms share the same general structure, and the 
same basic computational kernels. 

In our comparisons we consider vectorized versions of the four algorithms. To 
represent the sparse matrices, we use a general storage format that allows the sparse 
matrix-vector product to be efficiently vectorized [9]. The storage representation is 
quite general and sparse matrices generated by irregular grids can be efficiently 
represented: the only constraint is that all the rows of the sparse matrix must have 
roughly the same number of non-zero elements to not degrade performance. Using 
this representation the solution of the two sparse triangular systems in the 
preconditioning step is not vectorized. If the sparse matrix is generated by a regular 
grid and has a regular diagonal structure, it is possible to use more efficient storage 
representations. We do not consider such storage schemes in this note. 
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The CGN and the BCG algorithms perform operations that involve the trans- 
pose of the original matrix. In our implementation of these two algorithms we store 
the transpose, because on the IBM 3090 VF this is cheaper than scanning the 
original matrix to search for elements to perform operations with the transpose. 
This would not be necessary if the matrix were stored by diagonals. 

We outline here the computational procedure: 

1. Scale the matrix A and the right hand side b by a diagonal matrix D such 
that all the diagonal elements of the matrix (D-‘A)(DPIA)’ are equal to 1 (such 
a scaling is introduced to improve numerical stability, see, e.g., [12]). 

2. For CGN and BCG, transpose matrix A and store A’. 
3. Compute and store the incomplete factors L, D, and U of the incomplete 

(ILU) decomposition A = LDU- R [8, 111. We used a standard incomplete 
factorization scheme. L and U are required to have the same sparsity structure 
as A: an entry is accepted in L or U during the factorization process only if the 
corresponding entry of A is non-zero. When a modified incomplete factorization 
(MILU) [6] is used, the factorization procedure must satisfy the following 
additional row-sum criterion: the sums of the elements in a given row of A and 
LDU must be equal. 

4. For CGN and BCG, transpose L and U and store the two transpose 
factors. 

5. Iterate until convergence. The main kernels of the iteration routine are 
matrix-vector products, the solution of sparse triangular systems, and vector 
updates. 

We outline below the iteration schemes. K= LDU denotes either the standard or 
the modified incomplete decomposition of A. The iteration procedure is terminated 
when the relative norm of the residual is less than a specified precision, typically 
10p6. 

Normal Equations CGN [2,3] 

The normal equations algorithm is conjugate gradient applied to the matrix AA’, 
which is symmetric and positive definite. Although the algorithm theoretically 
converges for any non singular matrix, the convergence rate is slow and the 
round-off error builds up very fast in many cases of practical interest: 

0 Initialization 
- choose uO, compute r,, = K-‘(b - Au,), and q. = (ro, ro) 
- set p. = A’Kp’ro 

l For i= 0, 1, . . . . do until /I~il12/Il~i112 <E 
- a, = ?il(Pc Pi) 

u;, 1 = ui + NiPi 
ri+ 1 = ri - ajK-’ Api 
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- Vi+I=(ri+l?ri+l) 

- Br+1=yli+liiyli 

- Pi+l=A’Kp’ri+,+fii+IPi’ 

Bi-conjugate Gradient BCG [3, 10, 13, 14, 151 

The BCG algorithm has been used successfully by Mikic and Morse [13] and 
Koniges and Anderson [lo] for problems similar to the one we consider: 

0 Initialization 
- choose uO, compute r0 = KP’(b - Au,,) 

- set r,, =p,, =pO = rO, and compute qO= (rO, rO) 

l For i=O, 1, . . . . do until lIri(12/(Iuil12 <E 

- u, = vi/G,> K-’ AP,) 

Uifl = 24, + LXjpi 

rii , = r, - cc,K-‘Ap, 

ri+, =fi--a,A’K-‘pi 

- vi+l=(~r+lJrr+I) 

~ Bl+l=)li+l/)li 

- P,+~=ri+~+Bi+lP~ 

- Pi+lFJl+I+Bi+IPl. 

The vectors ri and Yi are such that they verify a biorthorgonality property: 
(ri, rJ) = 0 for i#j, and pi and pi verify a biconjugacy property: (Api,pj) = 0 for 
i # j. The algorithm converges in at most n iterations if it does not break down: as 
far as we know it is difficult to establish a priori if this condition is satisfied. 

Conjugate Gradient Squared CGS [ 171 

CGS was introduced recently by Sonneveld, Wesseling, and de Zeeuv [17]. It is 
derived from BCG to circumvent the need to store the transposes of the coefficient 
matrix and of the preconditioner. From the equations describing the BCG 
algorithm, we see that ri and ii can be expressed as polynomials Qi of degree i in 
the matrices B = K- ‘A and B’ applied to the original residual vectors r0 and r0 : 

ri= 4Pi(B) r,,, ri= Qi(B’) f,,. 

As a consequence the scalar product vi can be computed as 

vi= (ri, Fi)= (Gi(B) rO, Qi(B’) F,,)= (@i(B)2 rO, FO). 

Note that the transpose matrix does not appear in the last term. CGS is based 
on using some simple algebraic manipulations on @ to obtain a recursive relation 
for Qi(B)*r,, the square of the residual of BCG, which is the residual for the new 
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algorithm. If IIQi(B) r0 /I 2 converges to 0, so does Il@i(B)2r, 11 2. Hence CGS 
converges whenever BCG does and has a faster convergence rate: 

0 Initialization 
- choose uO, compute r0 = KP ‘(b - Au,), set To = g, = rO, h, = 0, PO = 0, 

and compute q,(r,, rO) 
l For i=O, I,..., do until IJriJ12/JluiJ(,<~ 

- cxi= q;/(i,,, KP’Ag;) 

- hi+,=ri+~,h,+cc,K~‘Agi 

- pi=r,+j?,h,+hi+, 
- ui+ I = 24j + a,p, 

ri+, = ri- x,KP’Ap, 

- yli+~=(~o~ri+~) 

- Pi+ 1 = Vi+ IlVr 

- gi+I=ri+l +2Pi+lhi+l +Pt+Igt. 

GMRES [16] 

Several iterative schemes for non-symmetric matrices are based on minimizing 
the residual ri over the Krylov subspace spanned by r,,, Ar,, . . . . A’+‘ro. Here we 
describe GMRES(k). This method is attractive because it cannot break down, it is 
stable, and it only requires storing a small number of search directions along which 
to minimize the residual before restarting the process. In a practical implementation 
it is generally sufficient to generate 5 to 10 Krylov vectors before restarting the 
process: 

l choose x0, and compute r. = KP ‘(b - Au,). 

l generate an orthonormal basis for the k-dimensional Krylov subspace Kk 
spanned by r,,, . . . . K- ‘Ak- ‘r,, using a modified Gram-Schmidt procedure. 

l solve a least squares problem to find z in Kk so that x~+~ = xi + z has 
minimum residual. 

0 if Jlri+kl(2/I(Ui+k112~& exit, else restart. 

4. NUMERICAL EXPERIMENTS 

The test problem consists in computing the current driven by the radio frequency 
waves in opposition to the electric field E. This requires evolving the code for a 
physical time of about a thousand collision times t,, - 103v; ‘, which is achieved in 
300 Crank-Nicolson steps. From a computational point of view, this requires 
solving 300 times the sparse, non-symmetric linear system (3). We have solved this 
problem for many different values of the electric field E, which means solving 
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TABLE I 

Total CPU Seconds to Solve the Problem of Size 64 x 32 

Method 

ILU-CGN 
ILU-BCG 
ILU-CGS 

ILU-GMRES 
MILU-CGN 
MILU-BCG 
MILU-CGS 

MILU-GMRES 

E/u0 = 0.01 E/u0 = 0.20 

952 1140 
422 492 
327 389 
303 348 

1275 xxx 
549 601 
560 630 
xxx xxx 

systems with very different skew symmetric part B, generated by the convective 
term. We recall that the linear systems generated by this problem are positive real, 
i.e., the symmetric part is positive definite. The skew-symmetric part B, generated 
by E = 0.2~~ is fairly large; in fact in this case the critical speed u,= fi is well 
inside the computational domain which extends up to 15 electron thermal speed 
units. 

We report in Table I the total CPU time required to solve the problem for two 
distinct values of the electric field. With “xxx” we indicate that the method has not 
converged after 400 iterations at one particular time step. The CPU time includes 
the solution of 300 linear systems of size 2048, the time to compute the array w, 
(200 components) and the time to generate the time-dependent matrices. We report 
the times obtained using the four different algorithms, using both ILU and MILU 
preconditioning schemes. All the performance data were obtained on the IBM 3090 
with the vector facility at ECSEC [4]. We point out that the values of the main 
physical quantities obtained using the iterative schemes that converged and the 
Gauss method deviate by less than lo% which is well within the accuracy required 
for this kind of physical problem. 

Table II summarizes the storage needed by the four algorithms. Each double- 
precision real number is stored in 64 bits. Vectors in the table refers to the storage 
for the right-hand side, the initial guess, and some work arrays needed for the itera- 
tion process; note that this is independent of the sparsity structure of the matrix. 

TABLE II 

Storage Requirements (in Double Words) 

Method Vectors Matrices Total 

CGN 7*M 54*M 61*M 
BCG 9*M 54*M 63*M 
CGS 9*M 27*M 36*M 

GMRES( 10) (10+4)*M 27*M (10+31)*M 

5X1/80/2-I6 
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TABLE III 

Comparing CGS and the Banded Gauss Scheme 

Size CGS GAUSS 

CPU time Memory CPU time Memory 

64x32 3.3 lo* 0.071 2.6 lo* 0.13 
128 x 64 1.4 lo3 0.29 3.9 lo3 1.07 
192 x 96 4.8 10’ 0.66 1.9 104 3.59 

Matrices refers to A, the preconditioner, and, where needed, their transposes; these 
figures are peculiar to the sparsity structure we consider in this example. 

We remark that ILU-BCG, ILU-CGS, and ILU-GMRES perform successfully, 
while CGN requires considerably more CPU time. Second we note that the MILU 
preconditioner is less efficient, although we do not have a theoretical explanation 
for this. The data reported in Tables I and II suggest that CGS and GMRES are 
more efficient both in terms of CPU time and need about half as much memory as 
the other algorithms. 

Because of the small size of the problem (64 x 32) reported here, the Gauss solver 
is still competitive with the iterative schemes. However, this situation is rapidly 
reversed on liner grids as shown in Table III which reports the CPU time and the 
storage required by CGS and by the banded Gauss solver for three problems of 
increasing size. Time is measured in seconds and storage in units of lo6 double- 
words. 

The data we report were obtained with a relative precision of 1O-9 in the stop- 
ping criterion. This was chosen to be comparable to the precision yielded by the 
Gauss scheme. For these particular physical problems, this is far too restrictive a 
criterion. Choosing a relative precision of 10e6 with ILU-GMRES, 64x 32, 
E = 0.20, we obtained a global solve time of 200 s, instead of the 348 reported in 
Table I. The results of the two runs are indistinguishable from the physical point 
of view. This shows that a careful tuning, which was not within the scope of this 
note, of the parameters of the iterative schemes may yield significant performance 
improvements. 

The data presented in this note show that for our problem, the iterative 
methods provide a viable alternative to the direct Gauss elimination scheme, 
particularly when the size of the problem is very large. We expect this conclusion 
to apply to a wider class of convection-diffusion equations in which the symmetric 
part of the linear system is positive definite. 
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